Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Biomédica (Bogotá) ; 34(supl.1): 41-49, abr. 2014. ilus, tab
Article in English | LILACS | ID: lil-712420

ABSTRACT

Introduction: Aminoglycosides like streptomycin are well-known for binding at specific regions of ribosome RNA and then acting as translation inhibitors. Nowadays, several pathogens have been detected to acquire an undefined strategy involving mutation at non structural ribosome genes like those acting as RNA methylases. rsmG is one of those genes which encodes an AdoMet-dependent methyltransferase responsible for the synthesis of m 7 G527 in the 530 loop of bacterial 16S rRNA. This loop is universally conserved, plays a key role in ribosomal accuracy, and is a target for streptomycin binding. Loss of the m 7 G527 modification confers low-level streptomycin resistance and may affect ribosomal functioning. Objectives: After taking into account genetic information indicating that some clinical isolates of human pathogens show streptomycin resistance associated with mutations at rsmG , we decided to explore new hot spots for mutation capable of impairing the RsmG in vivo function and of promoting low-level streptomycin resistance. Materials and methods: To gain insights into the molecular and genetic mechanism of acquiring this aminoglycoside resistance phenotype and the emergence of high-level streptomycin resistance in rsmG mutants, we mutated Escherichia coli rsmG and also performed a genotyping study on rpsL from several isolates showing the ability to grow at higher streptomycin concentrations than parental strains. Results: We found that the mutations at rpsL were preferentially present in these mutants, and we observed a clear synergy between rsmG and rpsL genes to induce streptomycin resistance. Conclusion: We contribute to understand a common mechanism that is probably transferable to other ribosome RNA methylase genes responsible for modifications at central sites for ribosome function.


Introducción. Los aminoglucósidos son moléculas antibióticas capaces de inhibir la síntesis de proteínas bacterianas tras su unión al ribosoma procariota. La resistencia a aminoglucósidos está clásicamente asociada a mutaciones en genes estructurales del ribosoma bacteriano; sin embargo, varios estudios recientes han demostrado, de forma recurrente, la presencia de un nuevo mecanismo dependiente de mutación que no involucra genes estructurales. El gen rsmG es uno de ellos y se caracteriza por codificar una metiltransferasa que sintetiza el nucleósido m 7 G527 localizado en el loop 530 del ribosoma bacteriano, este último caracterizado como sitio preferencial al cual se une la estreptomicina. Objetivo. Partiendo de las recientes asociaciones clínicas entre las mutaciones en el gen rsmG y la resistencia a estreptomicina, este estudio se propuso la caracterización de nuevos puntos calientes de mutación en este gen que puedan causar resistencia a estreptomicina usando Escherichia coli como modelo de estudio. Materiales y métodos. Se indagó sobre el mecanismo genético y molecular por el cual se adquiere la resistencia a estreptomicina y su transición a la resistencia a altas dosis mediante mutagénesis dirigida del gen rsmG y genotipificación del gen rpsL . Resultados. Se encontró que la mutación N39A en rsmG inactiva la proteína y se reportó un nuevo conjunto de mutaciones en rpsL que confieren resistencia a altas dosis de estreptomicina. Conclusiones. Aunque los mecanismos genéticos subyacentes permanecen sin esclarecer, se concluyó que dichos patrones secuenciales de mutación podrían tener lugar en otros genes modificadores del ARN bacteriano debido a la conservación evolutiva y al papel crítico que juegan tales modificaciones en la síntesis de proteínas.


Subject(s)
Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli Proteins/genetics , Mutation, Missense , Methyltransferases/genetics , Point Mutation , RNA Processing, Post-Transcriptional/genetics , RNA, Bacterial/metabolism , /metabolism , Streptomycin/pharmacology , Amino Acid Sequence , Binding Sites/genetics , Catalytic Domain/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/drug effects , Escherichia coli/enzymology , Methylation , Models, Molecular , Molecular Sequence Data , Methyltransferases/chemistry , Methyltransferases/metabolism , Phylogeny , Protein Conformation , RNA, Bacterial/genetics , /genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , S-Adenosylmethionine/metabolism , Sequence Alignment , Sequence Analysis, DNA , Sequence Deletion , Sequence Homology, Amino Acid
2.
Biomédica (Bogotá) ; 30(2): 170-177, jun. 2010. mapas, tab
Article in Spanish | LILACS | ID: lil-560978

ABSTRACT

La bioinformática, como la conocemos hoy en día, es una de las ciencias con mayor proyección en la adquisición de conocimiento científico. Contrario a lo que se piensa, esta ciencia tuvo sus inicios en los años 50, pero no fue sino hasta hace un par de décadas cuando tuvo su verdadero auge con la creación de las primeras bases de datos y el desarrollo de algoritmos computacionales diseñados para el análisis de secuencia. El desarrollo científico y tecnológico alcanzado a nivel mundial, constantemente nos lleva a evaluar las posibilidades de transferencia de esos logros a nuestra sociedad científica. En este punto, la bioinformática se ha sumado a la larga lista de retrasos científicos de los cuales padece constantemente nuestra sociedad. No obstante, las nuevas proyecciones y políticas de investigación y desarrollo logradas recientemente en nuestro país, han abierto definitivamente el camino para la aplicación y desarrollo de la bioinformática, la cual durante años ha sido mantenida tímidamente como objeto de estudio por pocos grupos de investigación de nuestro país. Una vez fueron propuestos los actuales modelos de sostenimiento y desarrollo con base biotecnológica, se ha dado un salto generacional en la investigación computacional en Colombia y nuestros objetivos científicos, aunque a largo plazo, están trazados al mismo nivel de países como Chile, Argentina, Brasil y México, que son los referentes inmediatos para la región. En este breve ensayo queremos resaltar la situación actual en la investigación bioinformática llevada a cabo en nuestro país, así como también, plantear las perspectivas que se esperan para esta ciencia de gran impacto a nivel mundial.


Bioinformatics emerged about 50 years ago, but it was developed greatly during the early 1980’s by robust databases such as GenBank, EMBL, and DNA Database of Japan (DDBJ). Bioinformatic routines were rapidly adapted once the main algorithms for sequence analysis became available worldwide. As in other science fields, bioinformatics had minimal impact in low-income countries of Latin America until the last decade.We revised the bioinformatics state of art in Colombia and found a few bioinformatics groups carrying out basic computational biology research. Nowadays, bioinformatics in Colombia has a hopeful scenario thanks to recent science policies adopted by the Colombian Government. Such policies have been adopted in order to establish a new model of sustainable scientific research. In this brief report we revise the bioinformatics state of the art in Colombia. Finally, we conclude with some considerations for the proposed science model and we describe different perspectives of interest for the Colombian scientific community.


Subject(s)
Biotechnology , Computational Biology , Molecular Biology , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL